Runs the Monocle2 algorithm on a Seurat object.
Usage
RunMonocle2(
srt,
assay = NULL,
slot = "counts",
expressionFamily = "negbinomial.size",
features = NULL,
feature_type = "HVF",
disp_filter = "mean_expression >= 0.1 & dispersion_empirical >= 1 * dispersion_fit",
max_components = 2,
reduction_method = "DDRTree",
norm_method = "log",
residualModelFormulaStr = NULL,
pseudo_expr = 1,
root_state = NULL,
seed = 11
)
Arguments
- srt
A Seurat object.
- assay
The name of the assay in the Seurat object to use for analysis. Defaults to NULL, in which case the default assay of the object is used.
- slot
The slot in the Seurat object to use for analysis. Default is "counts".
- expressionFamily
The distribution family to use for modeling gene expression. Default is "negbinomial.size".
- features
A vector of gene names or indices specifying the features to use in the analysis. Defaults to NULL, in which case features were determined by
feature_type
.- feature_type
The type of features to use in the analysis. Possible values are "HVF" for highly variable features or "Disp" for features selected based on dispersion. Default is "HVF".
- disp_filter
A string specifying the filter to use when
feature_type
is "Disp". Default is "mean_expression >= 0.1 & dispersion_empirical >= 1 * dispersion_fit".- max_components
The maximum number of dimensions to use for dimensionality reduction. Default is 2.
- reduction_method
The dimensionality reduction method to use. Possible values are "DDRTree" and "UMAP". Default is "DDRTree".
- norm_method
The normalization method to use. Possible values are "log" and "none". Default is "log".
- residualModelFormulaStr
A model formula specifying the effects to subtract. Default is NULL.
- pseudo_expr
Amount to increase expression values before dimensionality reduction. Default is 1.
- root_state
The state to use as the root of the trajectory. If NULL, will prompt for user input.
- seed
An integer specifying the random seed to use. Default is 11.
Examples
if (interactive()) {
data("pancreas_sub")
pancreas_sub <- RunMonocle2(srt = pancreas_sub)
names(pancreas_sub@tools$Monocle2)
trajectory <- pancreas_sub@tools$Monocle2$trajectory
CellDimPlot(pancreas_sub, group.by = "Monocle2_State", reduction = "DDRTree", label = TRUE, theme_use = "theme_blank") + trajectory
CellDimPlot(pancreas_sub, group.by = "Monocle2_State", reduction = "UMAP", label = TRUE, theme_use = "theme_blank")
FeatureDimPlot(pancreas_sub, features = "Monocle2_Pseudotime", reduction = "UMAP", theme_use = "theme_blank")
pancreas_sub <- RunMonocle2(
srt = pancreas_sub,
feature_type = "Disp", disp_filter = "mean_expression >= 0.01 & dispersion_empirical >= 1 * dispersion_fit"
)
trajectory <- pancreas_sub@tools$Monocle2$trajectory
CellDimPlot(pancreas_sub, group.by = "Monocle2_State", reduction = "DDRTree", label = TRUE, theme_use = "theme_blank") + trajectory
CellDimPlot(pancreas_sub, group.by = "Monocle2_State", reduction = "UMAP", label = TRUE, theme_use = "theme_blank")
FeatureDimPlot(pancreas_sub, features = "Monocle2_Pseudotime", reduction = "UMAP", theme_use = "theme_blank")
}