Skip to contents

All functions

AnnotateFeatures()
AnnotateFeatures Annotate features in a Seurat object with additional metadata from databases or a GTF file.
BBKNN_integrate()
BBKNN_integrate
CC_GenePrefetch()
Prefetch cycle gene
CSS_integrate()
CSS_integrate
CellCorHeatmap()
CellCorHeatmap
CellDensityPlot()
CellDensityPlot
CellDimPlot()
Visualize cell groups on a 2-dimensional reduction plot
CellDimPlot3D()
3D-Dimensional reduction plot for cell classification visualization.
CellScoring()
CellScoring
CellStatPlot()
Statistical plot of cells
ComBat_integrate()
Combat_integrate
Conos_integrate()
Conos_integrate
CreateDataFile()
CreateDataFile
CreateMetaFile()
CreateMetaFile
DefaultReduction()
Find the default reduction name in a Seurat object.
DynamicHeatmap()
Heatmap plot for dynamic features along lineages
DynamicPlot()
DynamicPlot
EnrichmentPlot()
EnrichmentPlot
Env_requirements()
Env_requirements function
FeatureCorPlot()
Features correlation plot This function creates a correlation plot to visualize the pairwise correlations between selected features in a Seurat object.
FeatureDimPlot()
Visualize feature values on a 2-dimensional reduction plot
FeatureDimPlot3D()
3D-Dimensional reduction plot for gene expression visualization.
FeatureHeatmap()
FeatureHeatmap
FeatureStatPlot()
Statistical plot of features
FetchH5()
Fetch data from the hdf5 file
GSEAPlot()
GSEA Plot
GeneConvert()
Gene ID conversion function using biomart
GraphPlot()
GraphPlot
GroupHeatmap()
GroupHeatmap
Harmony_integrate()
Harmony_integrate
Integration_SCP()
Integration_SCP
LIGER_integrate()
LIGER_integrate
LineagePlot()
LineagePlot
ListDB()
ListDB
MNN_integrate()
MNN_integrate
PAGAPlot()
PAGA plot
PrepareDB()
Prepare the gene annotation databases
PrepareEnv()
This function prepares the SCP Python environment by installing the required dependencies and setting up the environment.
PrepareSCExplorer()
Prepare Seurat objects for the SCExplorer
ProjectionPlot()
Projection Plot
RecoverCounts()
Attempt to recover raw counts from the normalized matrix.
RenameClusters()
Rename clusters for the Seurat object
RenameFeatures()
Rename features for the Seurat object
RunCSSMap()
Single-cell reference mapping with CSS method
RunCellQC()
Run cell-level quality control for single cell RNA-seq data.
RunDEtest()
Differential gene test
RunDM()
Run DM (diffusion map)
RunDimReduction()
Run dimensionality reduction
RunDoubletCalling()
Run doublet-calling for single cell RNA-seq data.
RunDynamicEnrichment()
RunDynamicEnrichment
RunDynamicFeatures()
RunDynamicFeatures
RunEnrichment()
Perform the enrichment analysis (over-representation) on the genes
RunFR()
Run Force-Directed Layout (Fruchterman-Reingold algorithm)
RunGLMPCA()
Run GLMPCA (generalized version of principal components analysis)
RunGSEA()
Perform the enrichment analysis (GSEA) on the genes
RunHarmony2()
Run Harmony algorithm
RunKNNMap()
Single-cell reference mapping with KNN method
RunKNNPredict()
RunKNNPredict
RunLargeVis()
Run LargeVis (Dimensionality Reduction with a LargeVis-like method)
RunMDS()
Run MDS (multi-dimensional scaling)
RunMonocle2()
Run Monocle2 analysis
RunMonocle3()
Run Monocle3 analysis
RunNMF()
Run NMF (non-negative matrix factorization)
RunPAGA()
Run PAGA analysis
RunPCAMap()
Single-cell reference mapping with PCA method
RunPHATE()
Run PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding)
RunPaCMAP()
Run PaCMAP (Pairwise Controlled Manifold Approximation)
RunPalantir()
Run Palantir analysis
RunSCExplorer()
RunSCExplorer
RunSCVELO()
Run scVelo workflow
RunScmap()
Annotate single cells using scmap.
RunSeuratMap()
Single-cell reference mapping with Seurat method
RunSingleR()
Annotate single cells using SingleR
RunSlingshot()
RunSlingshot
RunSymphonyMap()
Single-cell reference mapping with Symphony method
RunTriMap()
Run TriMap (Large-scale Dimensionality Reduction Using Triplets)
RunUMAP2()
Run UMAP (Uniform Manifold Approximation and Projection)
RunWOT()
Run WOT analysis
Scanorama_integrate()
Scanorama_integrate
Seurat_integrate()
Seurat_integrate
SrtAppend()
Append a Seurat object to another
SrtReorder()
Reorder idents by the gene expression
Standard_SCP()
Standard SCP
StatPlot()
StatPlot
Uncorrected_integrate()
Uncorrected_integrate
VelocityPlot()
Velocity Plot
VolcanoPlot()
VolcanoPlot
adata_to_srt()
Convert an anndata object to a seurat object using reticulate
adjcolors()
Convert a color with arbitrary transparency to a fixed color
as_matrix()
Attempts to turn a dgCMatrix into a dense matrix
blendcolors()
Blend colors
capitalize()
Capitalizes the characters Making the first letter uppercase
check_DataType()
Check and report the type of data
check_Python()
Check and install python packages
check_R()
Check and install R packages
check_srtList()
Check and preprocess a list of seurat objects
check_srtMerge()
Check and preprocess a merged seurat object
compute_velocity_on_grid()
Compute velocity on grid The original python code is on https://github.com/theislab/scvelo/blob/master/scvelo/plotting/velocity_embedding_grid.py
conda_install()
Installs a list of packages into a specified conda environment
conda_python()
Find the path to Python associated with a conda environment
db_DoubletDetection()
Run doublet-calling with DoubletDetection
db_Scrublet()
Run doublet-calling with Scrublet
db_scDblFinder()
Run doublet-calling with scDblFinder
db_scds()
Run doublet-calling with scds
download()
Download File from the Internet
drop_data()
Drop all data in the plot (only one observation is kept)
env_exist()
Check if a conda environment exists
exist_Python_pkgs()
Check if the python package exists in the environment
fastMNN_integrate()
fastMNN_integrate
find_conda()
Find an appropriate conda binary
geom_alluvial()
geom_alluvial
geom_alluvial_text() geom_alluvial_label()
geom_alluvial_label
geom_sankey()
geom_sankey
geom_sankey_bump()
geom_sankey_bump
geom_sankey_label() geom_sankey_text()
geom_sankey_label
get_vars()
Get used vars in a ggplot object
ifnb_sub
A subsetted version of 'ifnb' datasets
installed_Python_pkgs()
Show all the python packages in the environment
invoke()
Invoke a function with a list of arguments
isOutlier()
Detect outliers using MAD(Median Absolute Deviation) method
iterchunks()
Generate a iterator along chunks of a vector
lifemap_cell lifemap_compartment lifemap_organ
Embryonic Development Database from LifeMap Discovery
make_long()
make_long
palette_list
A list of palettes for use in data visualization
palette_scp()
Color palettes collected in SCP.
panc8_sub
A subsetted version of human 'panc8' datasets
pancreas_sub
A subsetted version of mouse 'pancreas' datasets
panel_fix() panel_fix_overall()
Set the panel width/height of a plot object to a fixed value.
ref_scHCL ref_scMCA ref_scZCL
Reference datasets for cell type annotation in single-cell RNA data
scVI_integrate()
scVI_integrate
segementsDf()
Shorten and offset the segment
show_palettes()
Show the color palettes
slim_data()
Drop unused data from the plot to reduce the object size
srt_to_adata()
Convert a seurat object to an anndata object using reticulate
theme_blank()
Blank theme
theme_sankey() theme_alluvial() theme_sankey_bump()
sankey_themes
theme_scp()
SCP theme
tochunks()
Split a vector into the chunks
try_get()
Try to evaluate an expression a set number of times before failing
unnest()
Implement similar functions to the unnest function in the tidyr package
words_excluded
Excluded words in keyword enrichment analysis and extraction