Function reference
-
AnnotateFeatures()
- AnnotateFeatures Annotate features in a Seurat object with additional metadata from databases or a GTF file.
-
BBKNN_integrate()
- BBKNN_integrate
-
CC_GenePrefetch()
- Prefetch cycle gene
-
CSS_integrate()
- CSS_integrate
-
CellCorHeatmap()
- CellCorHeatmap
-
CellDensityPlot()
- CellDensityPlot
-
CellDimPlot()
- Visualize cell groups on a 2-dimensional reduction plot
-
CellDimPlot3D()
- 3D-Dimensional reduction plot for cell classification visualization.
-
CellScoring()
- CellScoring
-
CellStatPlot()
- Statistical plot of cells
-
ComBat_integrate()
- Combat_integrate
-
Conos_integrate()
- Conos_integrate
-
CreateDataFile()
- CreateDataFile
-
CreateMetaFile()
- CreateMetaFile
-
DefaultReduction()
- Find the default reduction name in a Seurat object.
-
DynamicHeatmap()
- Heatmap plot for dynamic features along lineages
-
DynamicPlot()
- DynamicPlot
-
EnrichmentPlot()
- EnrichmentPlot
-
Env_requirements()
- Env_requirements function
-
FeatureCorPlot()
- Features correlation plot This function creates a correlation plot to visualize the pairwise correlations between selected features in a Seurat object.
-
FeatureDimPlot()
- Visualize feature values on a 2-dimensional reduction plot
-
FeatureDimPlot3D()
- 3D-Dimensional reduction plot for gene expression visualization.
-
FeatureHeatmap()
- FeatureHeatmap
-
FeatureStatPlot()
- Statistical plot of features
-
FetchH5()
- Fetch data from the hdf5 file
-
GSEAPlot()
- GSEA Plot
-
GeneConvert()
- Gene ID conversion function using biomart
-
GraphPlot()
- GraphPlot
-
GroupHeatmap()
- GroupHeatmap
-
Harmony_integrate()
- Harmony_integrate
-
Integration_SCP()
- Integration_SCP
-
LIGER_integrate()
- LIGER_integrate
-
LineagePlot()
- LineagePlot
-
ListDB()
- ListDB
-
MNN_integrate()
- MNN_integrate
-
PAGAPlot()
- PAGA plot
-
PrepareDB()
- Prepare the gene annotation databases
-
PrepareEnv()
- This function prepares the SCP Python environment by installing the required dependencies and setting up the environment.
-
PrepareSCExplorer()
- Prepare Seurat objects for the SCExplorer
-
ProjectionPlot()
- Projection Plot
-
RecoverCounts()
- Attempt to recover raw counts from the normalized matrix.
-
RenameClusters()
- Rename clusters for the Seurat object
-
RenameFeatures()
- Rename features for the Seurat object
-
RunCSSMap()
- Single-cell reference mapping with CSS method
-
RunCellQC()
- Run cell-level quality control for single cell RNA-seq data.
-
RunDEtest()
- Differential gene test
-
RunDM()
- Run DM (diffusion map)
-
RunDimReduction()
- Run dimensionality reduction
-
RunDoubletCalling()
- Run doublet-calling for single cell RNA-seq data.
-
RunDynamicEnrichment()
- RunDynamicEnrichment
-
RunDynamicFeatures()
- RunDynamicFeatures
-
RunEnrichment()
- Perform the enrichment analysis (over-representation) on the genes
-
RunFR()
- Run Force-Directed Layout (Fruchterman-Reingold algorithm)
-
RunGLMPCA()
- Run GLMPCA (generalized version of principal components analysis)
-
RunGSEA()
- Perform the enrichment analysis (GSEA) on the genes
-
RunHarmony2()
- Run Harmony algorithm
-
RunKNNMap()
- Single-cell reference mapping with KNN method
-
RunKNNPredict()
- RunKNNPredict
-
RunLargeVis()
- Run LargeVis (Dimensionality Reduction with a LargeVis-like method)
-
RunMDS()
- Run MDS (multi-dimensional scaling)
-
RunMonocle2()
- Run Monocle2 analysis
-
RunMonocle3()
- Run Monocle3 analysis
-
RunNMF()
- Run NMF (non-negative matrix factorization)
-
RunPAGA()
- Run PAGA analysis
-
RunPCAMap()
- Single-cell reference mapping with PCA method
-
RunPHATE()
- Run PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding)
-
RunPaCMAP()
- Run PaCMAP (Pairwise Controlled Manifold Approximation)
-
RunPalantir()
- Run Palantir analysis
-
RunSCExplorer()
- RunSCExplorer
-
RunSCVELO()
- Run scVelo workflow
-
RunScmap()
- Annotate single cells using scmap.
-
RunSeuratMap()
- Single-cell reference mapping with Seurat method
-
RunSingleR()
- Annotate single cells using SingleR
-
RunSlingshot()
- RunSlingshot
-
RunSymphonyMap()
- Single-cell reference mapping with Symphony method
-
RunTriMap()
- Run TriMap (Large-scale Dimensionality Reduction Using Triplets)
-
RunUMAP2()
- Run UMAP (Uniform Manifold Approximation and Projection)
-
RunWOT()
- Run WOT analysis
-
Scanorama_integrate()
- Scanorama_integrate
-
Seurat_integrate()
- Seurat_integrate
-
SrtAppend()
- Append a Seurat object to another
-
SrtReorder()
- Reorder idents by the gene expression
-
Standard_SCP()
- Standard SCP
-
StatPlot()
- StatPlot
-
Uncorrected_integrate()
- Uncorrected_integrate
-
VelocityPlot()
- Velocity Plot
-
VolcanoPlot()
- VolcanoPlot
-
adata_to_srt()
- Convert an anndata object to a seurat object using reticulate
-
adjcolors()
- Convert a color with arbitrary transparency to a fixed color
-
as_matrix()
- Attempts to turn a dgCMatrix into a dense matrix
-
blendcolors()
- Blend colors
-
capitalize()
- Capitalizes the characters Making the first letter uppercase
-
check_DataType()
- Check and report the type of data
-
check_Python()
- Check and install python packages
-
check_R()
- Check and install R packages
-
check_srtList()
- Check and preprocess a list of seurat objects
-
check_srtMerge()
- Check and preprocess a merged seurat object
-
compute_velocity_on_grid()
- Compute velocity on grid The original python code is on https://github.com/theislab/scvelo/blob/master/scvelo/plotting/velocity_embedding_grid.py
-
conda_install()
- Installs a list of packages into a specified conda environment
-
conda_python()
- Find the path to Python associated with a conda environment
-
db_DoubletDetection()
- Run doublet-calling with DoubletDetection
-
db_Scrublet()
- Run doublet-calling with Scrublet
-
db_scDblFinder()
- Run doublet-calling with scDblFinder
-
db_scds()
- Run doublet-calling with scds
-
download()
- Download File from the Internet
-
drop_data()
- Drop all data in the plot (only one observation is kept)
-
env_exist()
- Check if a conda environment exists
-
exist_Python_pkgs()
- Check if the python package exists in the environment
-
fastMNN_integrate()
- fastMNN_integrate
-
find_conda()
- Find an appropriate conda binary
-
geom_alluvial()
- geom_alluvial
-
geom_alluvial_text()
geom_alluvial_label()
- geom_alluvial_label
-
geom_sankey()
- geom_sankey
-
geom_sankey_bump()
- geom_sankey_bump
-
geom_sankey_label()
geom_sankey_text()
- geom_sankey_label
-
get_vars()
- Get used vars in a ggplot object
-
ifnb_sub
- A subsetted version of 'ifnb' datasets
-
installed_Python_pkgs()
- Show all the python packages in the environment
-
invoke()
- Invoke a function with a list of arguments
-
isOutlier()
- Detect outliers using MAD(Median Absolute Deviation) method
-
iterchunks()
- Generate a iterator along chunks of a vector
-
lifemap_cell
lifemap_compartment
lifemap_organ
- Embryonic Development Database from LifeMap Discovery
-
make_long()
- make_long
-
palette_list
- A list of palettes for use in data visualization
-
palette_scp()
- Color palettes collected in SCP.
-
panc8_sub
- A subsetted version of human 'panc8' datasets
-
pancreas_sub
- A subsetted version of mouse 'pancreas' datasets
-
panel_fix()
panel_fix_overall()
- Set the panel width/height of a plot object to a fixed value.
-
scVI_integrate()
- scVI_integrate
-
segementsDf()
- Shorten and offset the segment
-
show_palettes()
- Show the color palettes
-
slim_data()
- Drop unused data from the plot to reduce the object size
-
srt_to_adata()
- Convert a seurat object to an anndata object using reticulate
-
theme_blank()
- Blank theme
-
theme_sankey()
theme_alluvial()
theme_sankey_bump()
- sankey_themes
-
theme_scp()
- SCP theme
-
tochunks()
- Split a vector into the chunks
-
try_get()
- Try to evaluate an expression a set number of times before failing
-
unnest()
- Implement similar functions to the
unnest
function in the tidyr package
-
words_excluded
- Excluded words in keyword enrichment analysis and extraction