Function reference
-
AnnotateFeatures() - AnnotateFeatures Annotate features in a Seurat object with additional metadata from databases or a GTF file.
-
BBKNN_integrate() - BBKNN_integrate
-
CC_GenePrefetch() - Prefetch cycle gene
-
CSS_integrate() - CSS_integrate
-
CellCorHeatmap() - CellCorHeatmap
-
CellDensityPlot() - CellDensityPlot
-
CellDimPlot() - Visualize cell groups on a 2-dimensional reduction plot
-
CellDimPlot3D() - 3D-Dimensional reduction plot for cell classification visualization.
-
CellScoring() - CellScoring
-
CellStatPlot() - Statistical plot of cells
-
ComBat_integrate() - Combat_integrate
-
Conos_integrate() - Conos_integrate
-
CreateDataFile() - CreateDataFile
-
CreateMetaFile() - CreateMetaFile
-
DefaultReduction() - Find the default reduction name in a Seurat object.
-
DynamicHeatmap() - Heatmap plot for dynamic features along lineages
-
DynamicPlot() - DynamicPlot
-
EnrichmentPlot() - EnrichmentPlot
-
Env_requirements() - Env_requirements function
-
FeatureCorPlot() - Features correlation plot This function creates a correlation plot to visualize the pairwise correlations between selected features in a Seurat object.
-
FeatureDimPlot() - Visualize feature values on a 2-dimensional reduction plot
-
FeatureDimPlot3D() - 3D-Dimensional reduction plot for gene expression visualization.
-
FeatureHeatmap() - FeatureHeatmap
-
FeatureStatPlot() - Statistical plot of features
-
FetchH5() - Fetch data from the hdf5 file
-
GSEAPlot() - GSEA Plot
-
GeneConvert() - Gene ID conversion function using biomart
-
GraphPlot() - GraphPlot
-
GroupHeatmap() - GroupHeatmap
-
Harmony_integrate() - Harmony_integrate
-
Integration_SCP() - Integration_SCP
-
LIGER_integrate() - LIGER_integrate
-
LineagePlot() - LineagePlot
-
ListDB() - ListDB
-
MNN_integrate() - MNN_integrate
-
PAGAPlot() - PAGA plot
-
PrepareDB() - Prepare the gene annotation databases
-
PrepareEnv() - This function prepares the SCP Python environment by installing the required dependencies and setting up the environment.
-
PrepareSCExplorer() - Prepare Seurat objects for the SCExplorer
-
ProjectionPlot() - Projection Plot
-
RecoverCounts() - Attempt to recover raw counts from the normalized matrix.
-
RenameClusters() - Rename clusters for the Seurat object
-
RenameFeatures() - Rename features for the Seurat object
-
RunCSSMap() - Single-cell reference mapping with CSS method
-
RunCellQC() - Run cell-level quality control for single cell RNA-seq data.
-
RunDEtest() - Differential gene test
-
RunDM() - Run DM (diffusion map)
-
RunDimReduction() - Run dimensionality reduction
-
RunDoubletCalling() - Run doublet-calling for single cell RNA-seq data.
-
RunDynamicEnrichment() - RunDynamicEnrichment
-
RunDynamicFeatures() - RunDynamicFeatures
-
RunEnrichment() - Perform the enrichment analysis (over-representation) on the genes
-
RunFR() - Run Force-Directed Layout (Fruchterman-Reingold algorithm)
-
RunGLMPCA() - Run GLMPCA (generalized version of principal components analysis)
-
RunGSEA() - Perform the enrichment analysis (GSEA) on the genes
-
RunHarmony2() - Run Harmony algorithm
-
RunKNNMap() - Single-cell reference mapping with KNN method
-
RunKNNPredict() - RunKNNPredict
-
RunLargeVis() - Run LargeVis (Dimensionality Reduction with a LargeVis-like method)
-
RunMDS() - Run MDS (multi-dimensional scaling)
-
RunMonocle2() - Run Monocle2 analysis
-
RunMonocle3() - Run Monocle3 analysis
-
RunNMF() - Run NMF (non-negative matrix factorization)
-
RunPAGA() - Run PAGA analysis
-
RunPCAMap() - Single-cell reference mapping with PCA method
-
RunPHATE() - Run PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding)
-
RunPaCMAP() - Run PaCMAP (Pairwise Controlled Manifold Approximation)
-
RunPalantir() - Run Palantir analysis
-
RunSCExplorer() - RunSCExplorer
-
RunSCVELO() - Run scVelo workflow
-
RunScmap() - Annotate single cells using scmap.
-
RunSeuratMap() - Single-cell reference mapping with Seurat method
-
RunSingleR() - Annotate single cells using SingleR
-
RunSlingshot() - RunSlingshot
-
RunSymphonyMap() - Single-cell reference mapping with Symphony method
-
RunTriMap() - Run TriMap (Large-scale Dimensionality Reduction Using Triplets)
-
RunUMAP2() - Run UMAP (Uniform Manifold Approximation and Projection)
-
RunWOT() - Run WOT analysis
-
Scanorama_integrate() - Scanorama_integrate
-
Seurat_integrate() - Seurat_integrate
-
SrtAppend() - Append a Seurat object to another
-
SrtReorder() - Reorder idents by the gene expression
-
Standard_SCP() - Standard SCP
-
StatPlot() - StatPlot
-
Uncorrected_integrate() - Uncorrected_integrate
-
VelocityPlot() - Velocity Plot
-
VolcanoPlot() - VolcanoPlot
-
adata_to_srt() - Convert an anndata object to a seurat object using reticulate
-
adjcolors() - Convert a color with arbitrary transparency to a fixed color
-
as_matrix() - Attempts to turn a dgCMatrix into a dense matrix
-
blendcolors() - Blend colors
-
capitalize() - Capitalizes the characters Making the first letter uppercase
-
check_DataType() - Check and report the type of data
-
check_Python() - Check and install python packages
-
check_R() - Check and install R packages
-
check_srtList() - Check and preprocess a list of seurat objects
-
check_srtMerge() - Check and preprocess a merged seurat object
-
compute_velocity_on_grid() - Compute velocity on grid The original python code is on https://github.com/theislab/scvelo/blob/master/scvelo/plotting/velocity_embedding_grid.py
-
conda_install() - Installs a list of packages into a specified conda environment
-
conda_python() - Find the path to Python associated with a conda environment
-
db_DoubletDetection() - Run doublet-calling with DoubletDetection
-
db_Scrublet() - Run doublet-calling with Scrublet
-
db_scDblFinder() - Run doublet-calling with scDblFinder
-
db_scds() - Run doublet-calling with scds
-
download() - Download File from the Internet
-
drop_data() - Drop all data in the plot (only one observation is kept)
-
env_exist() - Check if a conda environment exists
-
exist_Python_pkgs() - Check if the python package exists in the environment
-
fastMNN_integrate() - fastMNN_integrate
-
find_conda() - Find an appropriate conda binary
-
geom_alluvial() - geom_alluvial
-
geom_alluvial_text()geom_alluvial_label() - geom_alluvial_label
-
geom_sankey() - geom_sankey
-
geom_sankey_bump() - geom_sankey_bump
-
geom_sankey_label()geom_sankey_text() - geom_sankey_label
-
get_vars() - Get used vars in a ggplot object
-
ifnb_sub - A subsetted version of 'ifnb' datasets
-
installed_Python_pkgs() - Show all the python packages in the environment
-
invoke() - Invoke a function with a list of arguments
-
isOutlier() - Detect outliers using MAD(Median Absolute Deviation) method
-
iterchunks() - Generate a iterator along chunks of a vector
-
lifemap_celllifemap_compartmentlifemap_organ - Embryonic Development Database from LifeMap Discovery
-
make_long() - make_long
-
palette_list - A list of palettes for use in data visualization
-
palette_scp() - Color palettes collected in SCP.
-
panc8_sub - A subsetted version of human 'panc8' datasets
-
pancreas_sub - A subsetted version of mouse 'pancreas' datasets
-
panel_fix()panel_fix_overall() - Set the panel width/height of a plot object to a fixed value.
-
scVI_integrate() - scVI_integrate
-
segementsDf() - Shorten and offset the segment
-
show_palettes() - Show the color palettes
-
slim_data() - Drop unused data from the plot to reduce the object size
-
srt_to_adata() - Convert a seurat object to an anndata object using reticulate
-
theme_blank() - Blank theme
-
theme_sankey()theme_alluvial()theme_sankey_bump() - sankey_themes
-
theme_scp() - SCP theme
-
tochunks() - Split a vector into the chunks
-
try_get() - Try to evaluate an expression a set number of times before failing
-
unnest() - Implement similar functions to the
unnestfunction in the tidyr package
-
words_excluded - Excluded words in keyword enrichment analysis and extraction